Implementasi Data Mining pada Penjualan Barang dengan Tekhnik K Means

Penulis

  • Dian Permata Sari Stmik Jayanusa
  • Wira Buana STMIK Jayanusa Padang
  • Mike Febri Mayang Sari STMIK Jayanusa Padang

DOI:

https://doi.org/10.55382/jurnalpustakaai.v5i1.955

Kata Kunci:

Data Mining, K-Means Clustering Algorithm, Sales of goods

Abstrak

One of the data mining techniques is the K-Means Clustering Algorithm, which is a method that partitions data into one or more clusters or groups. The K-Means algorithm groups data that have different characteristics into other groups. In this study, the K-Means algorithm is grouped into three groups, namely best-selling items, sold items, and less sold items. The grouping is based on the variables of item name, initial stock, and final stock, the case study of which is at the Eli daily shop based on the level of best-selling sales in the last month, namely January 2025. The purpose of using the K-Means algorithm technique is to implement sales strategies and provision of stock of goods that aim to reduce the risk of loss. With this research, it is hoped that it can become a marketing strategy that can provide profit and reduce the risk of sales losses.

Unduhan

Data unduhan belum tersedia.

Referensi

A. Nugraha, O. Nurdiawan, and G. Dwilestari, “Penerapan Data Mining Metode K-Means Clustering Untuk Analisa Penjualan Pada Toko Yana Sport,” JATI (Jurnal Mhs. Tek. Inform., vol. 6, no. 2, pp. 849–855, 2022, doi: 10.36040/jati.v6i2.5755.

Normah, B. Rifai, S. Vambudi, and R. Maulana, “Analisa Sentimen Perkembangan Vtuber Dengan Metode Support Vector Machine Berbasis SMOTE,” J. Tek. Komput. AMIK BSI, vol. 8, no. 2, pp. 174–180, 2022, doi: 10.31294/jtk.v4i2.

F. P. A. Hasibuan, S. Sumarno, and I. Parlina, “Penerapan K-Means pada Pengelompokan Penjualan Produk Smartphone,” SATESI J. Sains Teknol. dan Sist. Inf., vol. 1, no. 1, pp. 15–20, 2021, doi: 10.54259/satesi.v1i1.3.

H. Rosika et al., “Implementasi Rapidminer untuk Clustering Data Penjualan Pakaian Menggunakan Metode K Means,” vol. 5, pp. 221–231, 2024.

Noviyanto, “Penerapan Data Mining dalam Mengelompokkan Jumlah Kematian Penderita COVID-19 Berdasarkan Negara di Benua Asia,” Paradig. Inform. dan Komput., vol. 22, no. 2, pp. 183–188, 2020.

I. Julia, B. Priyatna, T. Tukino, and S. S. Hilabi, “Penerapan Metode K-Means Clustering Untuk Menentukan Jumlah Penjualan Terlaris Pada CV. Equipment & Tools,” Jutisi J. Ilm. Tek. Inform. dan Sist. Inf., vol. 13, no. 1, p. 428, 2024, doi: 10.35889/jutisi.v13i1.1840.

W. Mega, “Clustering Menggunakan Metode K-Means Untuk Menentukan Status Gizi Balita,” J. Inform., vol. 15, no. 2, pp. 160–174, 2015.

L. Azzahra and Amru Yasir, “Metode K-Means Clustering Dalam Pengelompokan Penjualan Produk Frozen Food,” J. Ilmu Komput. dan Sist. Inf., vol. 3, no. 1, pp. 1–10, 2024, doi: 10.70340/jirsi.v3i1.88.

Kasini and N. Hidayati, “Penerapan Data Mining Untuk Clustering Pada Toko Laura Grosir Dan Eceran Menggunakan Algoritma K-Means,” JUSTER J. Sains dan Terap., vol. 2, no. 3, pp. 51–60, 2023, doi: 10.57218/juster.v2i3.990.

P. Apriyani, A. R. Dikananda, and I. Ali, “Penerapan Algoritma K-Means dalam Klasterisasi Kasus Stunting Balita Desa Tegalwangi,” Hello World J. Ilmu Komput., vol. 2, no. 1, pp. 20–33, 2023, doi: 10.56211/helloworld.v2i1.230.

W. W. Kristianto, “Penerapan Data Mining Pada Penjualan Produk Menggunakan Metode K-Means Clustering (Studi Kasus Toko Sepatu Kakikaki),” J. Pendidik. Teknol. Inf., vol. 5, no. 2, pp. 90–98, 2022, doi: 10.37792/jukanti.v5i2.547.

vratiwi, septiana. (2024). Penerapan Metode Naïve Bayes Pada Sistem Penunjang Keputusan Pemilihan Bibit Unggul Kelapa Sawit . Jurnal Pustaka AI (Pusat Akses Kajian Teknologi Artificial Intelligence), 4(2), 31–37. https://doi.org/10.55382/jurnalpustakaai.v4i2.763

##submission.downloads##

Diterbitkan

2025-04-30

Cara Mengutip

Permata Sari, D., Buana, W. ., & Febri Mayang Sari, M. . (2025). Implementasi Data Mining pada Penjualan Barang dengan Tekhnik K Means. Jurnal Pustaka AI (Pusat Akses Kajian Teknologi Artificial Intelligence), 5(1), 106–112. https://doi.org/10.55382/jurnalpustakaai.v5i1.955