Penerapan Ant Colony Optimization Dengan Sentiment-Based Weighting Untuk Rekomendasi Rute Wisata Di Kota Makassar
DOI:
https://doi.org/10.55382/jurnalpustakaai.v5i2.1197Kata Kunci:
recommendation system, ant colony optimization, star rating, tourist route, Makassar CityAbstrak
AbstractAn effective and relevant tourist route recommendation system is essential to support tourists in making informed decisions when planning efficient and enjoyable trips. This study aims to develop a tourist route recommendation model for Makassar City by implementing a modified Ant Colony Optimization (ACO) algorithm that incorporates user star ratings as weighting factors. The research adopts a computational experimental quantitative approach, consisting of six main stages: identifying tourist destinations, collecting star rating data and estimated travel times between locations, calculating rating-based weights, implementing the ACO algorithm, and evaluating the resulting routes. The data used include star ratings of tourist destinations obtained from digital platforms and estimated travel times retrieved through online mapping services. The results indicate that the ACO model combined with rating-based weighting successfully generates routes that are more preferred by users, as they balance travel efficiency with the quality of destinations. Compared to conventional models that consider only travel time, this hybrid model delivers higher recommendation value in terms of user satisfaction. The proposed model can be applied in the development of intelligent tour guide applications to enhance tourists’ travel experiences. Furthermore, this study opens opportunities for future development by incorporating additional supporting variables to make the system more adaptive and context-aware.
Keywords: recommendation system, ant colony optimization, star rating, tourist route, Makassar City
AbstrakSistem rekomendasi rute wisata yang efektif dan relevan sangat dibutuhkan untuk mendukung pengambilan keputusan wisatawan dalam merencanakan perjalanan yang efisien sekaligus menyenangkan. Penelitian ini bertujuan untuk mengembangkan model rekomendasi rute wisata di Kota Makassar dengan mengimplementasikan algoritma Ant Colony Optimization (ACO) yang dimodifikasi dengan bobot berdasarkan rating bintang pengguna. Penelitian menggunakan pendekatan kuantitatif eksperimental berbasis komputasi dengan enam tahapan utama, mulai dari identifikasi destinasi wisata, pengumpulan data rating dan waktu tempuh antar lokasi, perhitungan bobot berbasis rating, implementasi ACO, hingga evaluasi hasil rute yang dihasilkan. Data yang digunakan meliputi rating bintang destinasi wisata dari platform digital serta estimasi waktu tempuh antar lokasi menggunakan layanan pemetaan daring. Hasil penelitian menunjukkan bahwa model ACO yang dikombinasikan dengan bobot rating mampu menghasilkan rute yang lebih disukai oleh pengguna karena menggabungkan efisiensi waktu dan kualitas destinasi. Dibandingkan dengan model konvensional yang hanya mempertimbangkan waktu tempuh, model hybrid ini memberikan nilai rekomendasi yang lebih tinggi dalam konteks kepuasan pengguna. Model yang dihasilkan dapat diimplementasikan dalam pengembangan aplikasi pemandu wisata berbasis sistem cerdas, khususnya untuk meningkatkan pengalaman perjalanan wisatawan. Penelitian ini juga membuka peluang untuk pengembangan lebih lanjut dengan menambahkan variabel-variabel pendukung lainnya agar sistem semakin adaptif dan kontekstual.
Kata kunci: sistem rekomendasi, ant colony optimization, rating bintang, rute wisata, Kota Makassar
Unduhan
Referensi
United Nations World Tourism Organization, "United Nations World Tourism Organization," 12 June 2025. [Online]. Available: https://www.unwto.org/un-tourism-world-tourism-barometer-data.
Badan Pusat Statistik, "Statistik Wisatawan Nasional 2024," Badan Pusat Statistik, 24 April 2024. [Online]. Available: https://www.bps.go.id/id/publication/2025/03/17/8f41f59ea24192828f6c7275/statistik-wisatawan-nasional-2024.html. [Accessed 12 June 2025].
C. Huda, A. Ramadhan, A. Trisetyarso and E. Abdurachman, "Smart Tourism Recommendation Model: A Systematic Literature Review," International Journal of Advanced Computer Science and Applications, vol. 12, no. 12, pp. 167-174, 2021.
I. Sustacha, J. F. Baños-Pino and E. D. Valle, "The role of technology in enhancing the tourism experience in smart destinations: A meta-analysis," Journal of Destination Marketing & Management, vol. 30, 2023.
I. G. S. Mas Diyasa, "ANT COLONY OPTIMIZATION TO DETERMINE THE SHORTEST ROUTE OF TOURIST DESTINATIONS IN BALI : A CASE STUDY," Jurnal Ilmiah Kursor, vol. 11, no. 3, 2022.
M. Badouch and M. Boutaounte, "Personalized Travel Recommendation Systems: A Study of Machine Learning Approaches in Tourism," Journal of Artificial Intelligence, Machine Learning and Neural Network, vol. 3, no. 3, 2023.
J. Ipmawati, S. Saifulloh and K. Kusnawi, "Analisis Sentimen Tempat Wisata Berdasarkan Ulasan pada Google Maps Menggunakan Algoritma Support Vector Machine," Indonesian Journal of Machine Learning and Computer Science, vol. 4, no. 1, 2024.
B. Liu, Sentiment Analysis and Opinion Mining, Morgan & Claypool Publishers, 2012.
M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mondada and T. Stützle, "Ant Colony Optimization and Swarm Intelligence," in 4th International Workshop, Brussels, Belgium, 2004.
S. Liang, T. Jiao, W. Du and S. Qu, "An improved ant colony optimization algorithm based on context for tourism route planning," PLOS ONE, vol. 16, no. 9, 2021.
W. Khofifah, D. N. Rahayu and A. M. Yusuf, "Analisis Sentimen Menggunakan Naive Bayes Untuk Melihat Review Masyarakat Terhadap Tempat Wisata Pantai Di Kabupaten Karawang Pada Ulasan Google Maps," Jurnal Publikasi Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 16, no. 4, p. 171–180, 2022.
##submission.downloads##
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2023 Rizky Aditya Nugroho, Achmad Mufliq

Artikel ini berlisensi Creative Commons Attribution 4.0 International License.