Perancangan Sistem Pendeteksi Penyakit Pada Rumput Laut Dengan Menggunakan Metode Convolutional Neural Network

Penulis

  • Mhd Adi Setiawan Aritonang Institut Teknologi Batam
  • Muhammad Abrar Masril Institut Teknologi Batam
  • Deosa Chaniago Institut Teknologi Batam
  • Muhammad Marshall Al Karim Institut Teknologi Batam
  • Viriya Mahani Cunis Institut Teknologi Batam
  • Surgiwe Institut Teknologi Batam

DOI:

https://doi.org/10.55382/jurnalpustakaai.v5i2.1160

Kata Kunci:

Deteksi Penyakit Rumput Laut, Convolutional Neural Network (CNN), YOLO v11, Ultralytics, Flask

Abstrak

Penelitian ini mengembangkan sistem deteksi penyakit pada rumput laut menggunakan metode Convolutional Neural Network (CNN) dengan YOLO v11. Sistem dilatih menggunakan data yang terdiri dari Healthy Seaweed, Kerak Bryozoan, dan ice-ice dari dataset Roboflow. Model YOLO v11m dengan 20 juta parameter dievaluasi menggunakan metrik presisi, recall, F1-Score, dan mAP. Hasil menunjukkan kinerja yang baik dalam deteksi penyakit dengan mAP50 sekitar 0.84 pada data validasi dan implementasi dalam aplikasi Web menggunakan Flask

Unduhan

Data unduhan belum tersedia.

Referensi

REFERENSI

https://theconversation.com/budi-daya-perikanan-indonesia-tumbuh-pesat-ini-3-caranya-agar-tak-merusak-lingkungan-201674 (Diakses 2 Juni 2025)

Rifki Andre, Dataset Rumput Laut, Roboflow (2024). Available at https://universe.roboflow.com/rifki-andre-2024/penyakit-rumput-laut

Munaeni, W., Lesmana, D., Irawan, H., Hamka, M.S. and Nafsiyah, I., 2023. Potensi Budidaya dan Olahan Rumput Laut di Indonesia. Tohar Media.

Nurlinda, N., Hasmin, E. and Jufri, J., 2024. DETEKSI PENYAKIT RUMPUT LAUT DENGAN RESIDUAL NEURAL NETWORK. Jurnal Tekinkom (Teknik Informasi dan Komputer), 7(2), pp.637-646.

He, K., Zhang, X., Ren, S. and Sun, J. (2016) 'Deep Residual Learning for Image Recognition', Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June, pp. 770-778. doi: 10.1109/CVPR.2016.90.

Khanam, R. and Hussain, M. (2024) YOLOv11: An Overview of the Key Architectural Enhancements. arXiv:2410.17725 [cs.CV]. Available at: https://arxiv.org/abs/2410.17725

Visualiasi YOLO model V11, (2024). Available at https://medium.com/@nikhil-rao-20/yolov11-explained-next-level-object-detection-with-enhanced-speed-and-accuracy-2dbe2d376f71 (Diakses 18 Juni 2025)

Ultralytics (2023) YOLOv8. GitHub. Available at: https://github.com/ultralytics/ultralytics (Accessed: 2 June 2025).

Wang, C.-Y., Liao, H.-Y. M., Wu, Y.-H., Chen, P.-Y., Hsieh, J.-W. and Yeh, I.-H. (2020) 'CSPNet: A New Backbone that can Enhance Learning Capability of CNN', Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 14-19 June, pp. 1571-1580. doi: 10.1109/CVPRW50498.2020.00203.

Wang, C.-Y., Liao, H.-Y. M., Yeh, I.-H., Wu, S.-H., Chen, P.-Y. and Hsieh, J.-W. (2024) YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv:2402.13616 [cs.CV]. Available at: https://arxiv.org/abs/2402.13616 (Accessed: 2 June 2025).

Wang, A., Wang, L., Li, J., Song, L., Liu, Y., Wang, L. and Zhang, Z. (2024) YOLOv10: Real-Time End-to-End Object Detection. arXiv:2405.14458 [cs.CV]. Available at: https://arxiv.org/abs/2405.14458 (Accessed: 2 June 2025).

NumPy committers, "NumPy," NumPy, 2025. [Online]. Available: https://numpy.org. (Accessed: 18 June 2025).

Python Software Foundation (2025) Python. Available at: https://www.python.org (Accessed: 18 June 2025).

Pallets Projects (2025) Flask. Available at: https://flask.palletsprojects.com (Accessed: 18 June 2025).

Pillow-Contributors (2025) Pillow. Available at: https://pypi.org/project/Pillow/ (Accessed: 18 June 2025).

OpenCV team (2025) OpenCV (Open Source Computer Vision Library). Available at: https://opencv.org (Accessed: 18 July 2025).

Ultralytics (2025) Ultralytics YOLO. Available at: https://github.com/ultralytics/ultralytics (Accessed: 18 June 2025).

I. Loshchilov and F. Hutter, "Decoupled Weight Decay Regularization," arXiv preprint arXiv:1711.05101, 2019. [Online]. Available: https://arxiv.org/abs/1711.05101. (Accessed: July 18, 2025).

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) ‘Gradient-Based Learning Applied to Document Recognition’, Proceedings of the IEEE, 86(11), pp. 2278–2324.

Aini, Q., Lutfiani, N., Kusumah, H. and Zahran, M.S., 2021. Deteksi dan pengenalan objek dengan model machine learning: Model YOLO. CESS (Journal of Computer Engineering, System and Science), 6(2), p.192.

Arnesia, P. D., Pratama, N. A., & Sjafrina, F. (2022). Aplikasi Artificial Intelligence Untuk Mendeteksi Objek Berbasis Web Menggunakan Library Tensorflow Js, React Js Dan Coco Dataset. JSiI (Jurnal Sistem Informasi), 9(1), 62-69.

##submission.downloads##

Diterbitkan

2023-08-31

Cara Mengutip

Aritonang, M. A. S., Abrar Masril, M. ., Chaniago, D. ., Marshall Al Karim, M. ., Mahani Cunis, V. ., & Surgiwe. (2023). Perancangan Sistem Pendeteksi Penyakit Pada Rumput Laut Dengan Menggunakan Metode Convolutional Neural Network. Jurnal Pustaka AI (Pusat Akses Kajian Teknologi Artificial Intelligence), 5(2), 408–417. https://doi.org/10.55382/jurnalpustakaai.v5i2.1160